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On diffusion approximation of controlled queueing processes

by

Yu-Chung Liao

Abstract

--Cant© jo queueing system can be controlled by switching service

rate. When there is a cost to change service rate, the control problem

turns out to be a sequential decision problem, i.e., to find a sequence of

optimal stopping times to switch service rate. Under heavy traffic conditions,

we show that the optimal cost functions of controlled rescaled queueing

processes converge to that of corresponding controlled diffusions for finite

time and for infinite time with discount factor criterions.
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1. Introduction

It is well known that heavy traffic queueing processes can be rescaled

to approximate diffusion processes. Rath [3] proves that the rescaled.

queueing processes converge weakly to diffusion processes under certain

stationary control strategies. In this paper, we consider a queueing system

controlled by a finite set of control actions. Each action represents a

service rate of the server of the queue. There are holding costs depending

on queue length, operating costs to utilize the server and switching costs

to switch control action. We show that the optimal cost functions of the

controlled rescaled queueing processes converge to that of controlled diffusion

processes. Hence, as in Kushner [3], it is meaningful to use diffusion processes

to model queueing systems from a control point of view.

Some weak convergence properties of queueing processes are discussed

in the next section. We define the control problem in Section 3 and prove the

convergence of the optimal cost functions for finite time and for infinite

time with discount factor criterions.

2. Weak Convergence of Queues

We follow I$1ehart-Whitt [2] and Rath [4] to state the assumptions needed

for week convergence. Let {u(m,n), m > 11 and v (nn), a 1 be sequences

of independent and identically distributed random variables for each

J A an'(l2,...N) and n > 1. For each n > 1, each of the sequences is

independent of the other. {u(n,n)) denotes the interarrival times of n-th

quemeing systm and {v (n,n)) denotes the service times of a-th queusing
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system when service rate j (i.e., control action j) is being used. We

further assume that there is an a > 2 such that

Ev(l,n) Eu(l,n)a < a ! I_ and j E A,

0 < Eu(l,n) = I/n(n) a _ 1,

0 -Evj( 1,) = ll(n) 1> and J 1A,

0 < ii. n(n) n <
n.-

0 < US V (n) = <  j A,

0 < HE 2[u1,n)] - 2 <

0 < lim a2uvi(l,n) 0a2 <  j A.

-ftl- ln f((n)-Uv (n) In 1 2 - d < JE A

and

a a. 3 2 ,."" 2.1/2.

In general a GI/G/l queue is not a Markov process. but we can make

it markovian by adding supplementary variables. So the state of such a

process is (,y,z) Where X is th queue length, y is the elapsed tiNe

-since the last customer entered the quue and z is the elapsed time since

the beginning of current service and za 0 if x - 0. Let

N c ) - ayt).72(t),;n(t))

be the u-th quemeng process under control action J with Initial sato

NO
+iA
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(x,y,z). Define the normalized process as

(x,y,z)Ct) (xt),Ynt),znt))
(nt n(nt),. T - ,:

1-- n1-n

where

n n n (/ x,ny,nz)

As n + -, Q converges to a process

(1) Q Oj (t) - (xo(t),yo(t),zo(t)).

Here xo(t) is a Browitian motion on R+ with drift d., variance 2 and
0 j

reflected irstantaneously at origin and y0 (t) = z0(t) = 0 for all t. More

precisely, let all the processes above be defined on a probability space

(a,F,P).

Theorem 1. Let (XnYn, Zn) be the initial state of Qn'J, 6(n) = IX-X 0  and

T < -. Then there is a sequence q'(n) independent of initial states and j

such that

(2) P SUP in(t)-x0 (t) [ > qo(n) * 6(n)) C q'(n)0<t<T

and q'(n)40 as n-.

Proof. The probability measures of (n'J converge weakly to that of QO~J if

S(n) * 0 as a- is proved in Iglehart-Whitt [2]. In (2) the fact that we

can use sup-norm rather than Skorokhod metric is due to the Holder continuity of

brmeuiam motion.

4 _ _ - - _ __Iz -" __ __ _ i"
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3. Convergence of Cost Functions

Let the queueing processes be controlled by switching service rate.

At the instant of switch if there is a customer being served by service rate

i, then the incompleted service will be discarded, i.e., the service life time

will become zero, and the customer will be served by another service rate

immediately. The control problem is a sequential decision problem with a

deterministic impulse of the z-couponent of the state at the time of switch.

From an optimal stopping time point of view the "small impulsd'means a slight

variation of obstacle. To make notations manageable, we will restrict to the

/K/1 case by assuming u(l,n) and v.(l,n) are exponentially distributed

for all n and J. Thus, the queueing processes are Markovian and no

suqpliemary variable is needed. Since we are going to assume the cost

functions depend on queue length only, the argument for SI/G/i case is the

same. Let

s o 
a Ro+

S a {k/n 1/ 2 1k is a nonnesative integer) n > 1,

A (wn:R* 1 $njwn  is right continuous with left limit) n > 0,

nt) (Vn) V Wnt) wn C Rn and n > 0,

Fn "( ({ns)Is < t} a > 0,

t O
and

Ja %

lte U11I

___ __ __



be defined by

en(wn)(s) =w (s+t) n > 0 and t > 0.

Then we use

(3) (0n,Ft,Fn,gt,xn(t),F n'j)
nt t n1 nI

to denote the n-th rescaled queueing process for n > 0 and the Brownian

motion in (1) for n = 0. Let

S = nXO Sn

n=0 n

f= fnn-

X(t) = X 1(t),
n0O n

X,j n=O pn

where

X = (XoXlx 2 ,...) E S and

0 (w)(s) =w(s+t) w E A and t >0.

Then

(O.Ft#Fvetvx~t) ,PxJ)

is a Markov process for each J. Its n-th projection, xn(t), is the process

kU

, . ,
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in (3). Define u = {s(k),u(k))k= as an admissible strategy if

s(k) is an Ft-stopping time such that

0 < s(k) _ s(k+l) and u(k) is an A-valued
(4)

F s(k)-measurable random variable such that

u(k) 0 u(k+l) for all k > 1.

Also,let U = {ulu is an admissible strategy). By Robin [6], for each

j 6 A, X E S and u E U there is a umique sequence Df probability measures

{pj uk on 0 such that

Xj M 'X,j,
(S)

Pu,k = -u,k- on F
xj x,j s(k)

and

(6) P t(B n e s(k) B') - [IPx(s(k))

where 5' E F, B C F s(k) B c (s(k) < -) and IB  is the indicator function

of B. From now on, when a real number x is considered as an element of Sn

we mean x represents

maIxy C SniY n _ x)

am when x is considered as an element of S we mean

x (x,x,x,...) C S.
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Lemma 1. Given x 6 R, j E A, u = {s(k),u(k)} 1  and T< = there is a

sequence q(n) depending on T only such that

(7) pUk{ sup Txn(t)-x0(t)j > (k+l)q(n)} < (k+l)q(n)

O<t<T

and q(n) 0 as n. .

Proof. Let q'(n) be as in Theorem I and

q(n) = q'(n) + n
-1/ 2 .

Then (7) holds for k = 0 by (2) and (5). Let

B ={ sup IXn(t)-X 0 (t)I < q(n)).
O<t<TAs (1)

Then

Pu'1l(B n { sup Ix (t)-x (t)I > 2q(n)}
X,:j s(l)AT<tT n 0

< Eu{IP(sup Ixn(t)-xo(t)t > 2q(n))l
_ x B X(s(1)AT)).U(l) O<t<T

I q(n).

Hence (7) holds for k = 1. Given (7) for k we can prove it for k + 1 in

the same manner.

Lot the holding and operating cost be described by f:Rx A R+  such

that

If(x,j) - f(yj)l < Ljx-yI j C A and x,y C R

and

f(x,j) < K J C A and x C R

M-,
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for some constant K and L. Let C: AXA + R be the switching cost such

that

C(i,j) > C > 0 i 0 j

and

C(ii) = 0 i E A

for some constant C. Given r > 0 as discount factor and 0 < T <.- as

terminal time, define the cost functions of initial state (x,j) and strategy

u as

(8) J (x,j,u,T) EU',M-  JT em) e-tf(x (t),u(t))dtnxj fo n

m -rs(k)
+ I I D(u(k-),u(k)),

k=I

Jn (x,j,u,T) lir Jn (x,j,u,T),

"m • u 'm  Te-rtf~ t,~)d

(9) Jn(x,j,u,T) E xEj 0 ne f(x (t),u(t))dt

m -rs(k)+ IIs[(k)<T~e (kc(u(k-l),u(k))

k=l

where C(u(O), u(1)) = C(j,u(1)) and

j t E [os(l)),

u(t) f u(k) t E [s(k),s(k+l)),

u(m) t > s(m)

for all n > 0 and m > 0. Then
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V (x,j,T) = inf J (x,j,u,T)
n u n

is the optimal cost function to control the n-th rescaled queueing process

for n > 0 and that of reflected Brownian motion for n * 0 and

vm (xj,T) = inf J (x,j,u,T)
n u nU

is that with no more than m switches.

Lemma 2. If T < -, then

(10) Vm (x,j,T) - V (x,j,T) = 0(l) n > 0.
n n

Proof. Consider m > 1 and u E U such that

J (x,j,u,T) < TK

and

p u :.s(m) < T) = a
xi

then

a < TK/C(m-1).

Hence, we have

Jx, j,u,T) - J (xj,u,T)

n n

< EU" T f(x (t),u(t)ldt
-i TAs(m)

2 2
.T K /C(m-I)

This implies (10).

:lA

i

... ! • I I I " _ _ _|I II F I. . . = " -. .
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Lemma 3.. Given T < and q(n) as in Lemma 1, then there is a function

g(m) such that

(11) tV(x~j,T) - Vm-(x,j,T)t g(m)q(n)

for all n >0, x ER+ and j EA.

Proof. For any u E U we have

ji M(x,j,u,T) - J M(x,j,u,T)j

<E~: f 0rtl(xn(t),u(t)) -f(xO(t),u(t))Id

< JT(m+l)q(n) + TL(m+1)q(n)

= g(m)q(n).

This implies (11).

Theorem 2. If T < then

(12) Vn(x1J.T) -I. V0 (x,J,T)

uniformly in x as n -. c for all j CA.

Proof. By Luinas 2 and 3 we have

IV n(xJT) - V(Xj,T)I

IV. Ij IT) -V(xJT) I + V~(JT - V-(X,i.T) I + IV*(x~j IT)

- v (X.J,T)I

<q (n)gS(a) *0(1)

for all x CR* and J.EA.
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Corollary 1. If r > 0 then (12) holds for T

Remark I. Let T=, n > 0, r > O,

Vxj,T) = E( e-rtf(x (t),j)dt
n J10  n

and

(13 V~~j,) = infEs e-rtS(nt ,J(1) n f(x (t),j)dt + e- {min C(j,i)

s i f i#j

+ V '1(x (s),i,T)} m > 1.
n n

Here s ranges over all Fn-stopping times and the expectations arc taken

with respect to PXJ" Let

V(X,j,T) = lim Wn(x,j,T).

By Robin [6], V is the optimal cost function to control n-th system with

admissible strategy in (4) adapted to {F n and system with admissible
t

strategy in (4) adapted to F n and
t

(14) Vm(x,j,T) = inf E ert f(x (t),j)dt + e'rs(min COi) + 'l(x (s),iT)}n s f0 n ivj n n

where s ranges over all Ft-stopping times for all m > 1 and n > 0. It is

clear that

V;(X.J.T) = V(xjT).

By Dynkin [1], the optimal stopping time in (14) depends on the state of Xa,

hence, adapts to Fn From (13) and (14), we havet
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Vm(x,j,T) = Vn(x,j,T) m > 1 and n > 0

by induction on m. Hence,

V (xj,T) = V (x,j,T) n > 0.

So we did not change the problem by considering a larger class of admissible

controls in (4). The same is true for T < -.

Remark 2. In GI/G/I case, Remark I can be repeated if Qn'j is Fellerien

for all n and j. See Dynkin [1] and Robin [6].

Remark 3. The above argument can be generalized to the multi-dimensional case

since we did not use 1-dimension property. See Riemann [5].

Acknowledgement. I wish to thank Professor Wendell H. Fleming for his

encouragement, advice and careful reading of my thesis of which this is a part.
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